
Rollie: A Two-Wheeled Robot

William D. Sherman

botronics@earthlink.net

Abstract
The idea of building a robot with two wheels was
tested. Requirements for this project included the use
of readily available and inexpensive materials. The
use of standard size hobby servos to move the robot,
required weight to be minimized and distributed in
order for the robot to maintain balance. The design
included the use of sensors to detect obstacles and
people. The possible development and potential
problems in detecting a remote beacon or IR command
transmission was fully explored.

1 Why Two Wheels?

 Why build a robot (fig. 1) with just two wheels? The
use of two wheels enables the robot to execute turns
centered upon it axis. Such turning allows accurate
scanning and maneuvering without using a large ground
area. Tight turning is not possible with a fixed four-wheel
design. The use of two wheels with an idler wheel
located in the front or back of the robot to maintain
balance was considered but found undesirable. The use of
two wheels allows the robot’s electronics to be protected
inside the space between the wheels. Additionally, the
height of the wheels gives the robot good ground
clearance over obstacles. If the robot comes up against a
wall it simply flips over, with the robots interior
completely protected. Interrupting rotation while rolling
causes a gentle rocking action of its interior, allowing
scanning of the area ahead.

Fig. 1

2 Wheel Design

 A simple wheel design, easily duplicated by others, was
desired. Use of a CD-ROM disc was just the right size,
occasionally found in one’s mailbox as part of the junk
mail everyone receives. The use of a single disc lacked
the dimensional stability and strength required for a
wheel. Using two discs with a ½ inch foam disc
sandwiched between solved this problem. The foam disc
(fig.2) is made ½ inch larger in diameter than the CDs,
giving a ¼ inch edge for traction with the floor.

 To hold this disc-foam-disc sandwich together, four ½
inch spacers were used to separate the CDs (fig. 6) while
one side was attached to a round servo horn. Existing
holes in the servo horn were opened in size to allow the
use of 4-40 machine screws to hold everything in place.
For increased traction, the edge could be scalloped,
though this was not tried.

Fig. 2

3 Circuitry

3.1 Controller

 A 16F84 PIC microcontroller from Microchip was
selected for the robot’s controller. The 16F84 is
inexpensive, easily obtained, uses very little power

and can be programmed “in-circuit” with the serial
port of a computer. In-circuit programming allows
programming of the PIC microcontroller without
removing the device from the robot. Only four lines
brought out to the PC serial port along with a 12v
power source are all that is required to program the
PIC. Programs were written and compiled in Basic
using Micro Engineering Lab’s PIC Basic Pro©, then
downloaded using IC-Prog©, a freeware program
found on the Internet.
 The 16F84 flash memory is limited to 1024 words,
while other PIC microcontrollers with more memory,
faster speed and increased I/O lines can be used, the
16F84 running at 20 Mhz was adequate for this
design. A small 1-7/8” by 2-3/4'’ perf board from
Radio Shack (274-150) contains the electronic circuit
of the controller and is mounted in the center of the
robot’s base. Connection of the sensors to the circuit
was accomplished by mounting female headers to the
board. This allowed easy plug-in connections. The
headers provide power, common, and input/output to
the PIC’s port. Mounted on each end of the base are
the servos that provide rotation of the wheels.

3.2 Power

 Four “AA” rechargeable alkaline batteries are used
to provide power and are mounted under the base.
The weight of the batteries keeps the center of gravity
below the wheels’ horizontal axis and acts as a
pendulum in maintaining the position of the robot as
it rolls along. The batteries supply power for about
90 minutes of autonomy to the robot.

4 Wheel Motors

4.1 Modified Servos

 To power the wheels, standard hobby servos were
used. These servos were modified for continuous
rotation by taking apart and removing the mechanical
connection of the position feedback potentiometer.
This is a common practice with robot builders and
several methods can be found on the Internet.
Sending pulse width modulation to the servo from the
robot’s microcontroller controls rotational speed.
Forward, backward and full stop are possible.

4.2 Power Saving Circuit

 To prevent the servo’s idle current of 8 milliamps
each from putting a drain on batteries, a power saver
circuit (fig. 3) was developed. The servos can be
completely powered down when not needed. A
IRF520 mosfet, used as a switch, was inserted on the
“high side” of the positive power connection to the
servo. A PVI5100 photovoltaic isolator (PVI) IC
from International Rectifier was used to drive the

mosfet. The PVI generates the turn-on voltage for
the mosfet and eliminates the voltage drop that would
occur when driving the mosfet in this fashion.
Placement of the mosfet on the high side keeps the
input voltage relationship with the microcontroller
the same when off, further reducing idle current. A
10 megohm resistor between gate and source, quickly
turns off the mosfet when the PVI is off.

Fig. 3 Power Saver Circuit

Fig. 4 Sensor Location

5 Sensors

5.1 Avoiding Obstacles

 Obstacle avoidance is one of the primary activities of
the robot when moving. Avoidance is achieved by
emitting beams of IR light and detecting the reflected IR
from objects with a sensor (fig. 4). To prevent
interference from other sources of light, only light
modulated at 38 kilohertz is emitted and received. An
IR LED on each side of the robot is pulsed to high
power with currents as high as 40ma. Pulses are
activated by software as needed during maneuvering.
Reception of reflected IR is accomplished by the use of
a Panasonic PNA4602, made to respond only to 38
kilohertz. The range of detection depends on the
reflectance of the obstacle and is in the range of 3 to 12
inches. The sensor, after detecting IR, outputs a low
state and remains in this state briefly. This delay allows
the microcontroller to pulse the IR LED, then check for
the response of the sensor without doing both at the
same time.

5.2 Passive Infrared

 A low power, passive infrared (PIR) sensor is used to
detect people or hot objects in the path of the robot.
The PIR can only see objects that move. Scanning the
area by rotating horizontally allows the robot to see
people or other hot objects that are stationary. The
relatively wide field of view is restricted by a section of
black heat shrink tubing placed around the PIR.
Restricting the field of view allows greater accuracy in
locating targets of interest.

6 Use of a Beacon

6.1 Charging plate

 The use of a beacon enabling the robot to seek-and-find
was an idea to explore. Such a beacon could allow the
robot to find its way “home” so as not to wander too far
away. If the wheels of the robot were constructed of a
conductive foam material and if the robot could make its
way on top of a sectional metal plate, then the robot could
draw power and charge it’s own batteries. The placement
of this plate would need to be marked with a beacon for
the robot to locate.

6.2 Communication

 Information could be sent from the beacon to the robot
for further instructions. Sending ASCII characters at
1200 baud was successful between two PIC
microcontollers with programs written in Basic showing
that this is possible. A range of about 15 feet between
beacon and receiver was possible during testing of this

idea. The implementation of communication with the
robot itself has not been done at this time.

6.3 Multi-frequency Required

 One problem that presented itself during testing was
infrared from the beacon at the same frequency (38kc)
interfered with the obstacle avoidance sensors of the
robot. Using sensors operating at a different frequency of
modulation should help with this problem. Panasonic IR
sensors are available at other frequencies of 36.7, 40 and
56.9 kilohertz.

7 Remote Control

 Some kind of remote control was desirable when the
robot was off on its own during behavior tests.
Sometimes the robot would wander into a dangerous
situation and had to be “rescued”. Between IR obstacle
avoidance routines the IR sensors are free to sense from
other sources such as a remote control. If the robot
receives IR during this time, the robot was programmed to
turn right. With a little skill, an operator can steer the
robot out of trouble. An IR remote (fig. 5) using the same
pulse modulation frequency of 38 kilohertz was
constructed with another 16F84 PIC and programmed in
Basic.

Fig. 5

8 Bells and Whistles

 To help follow how the program progressed as it ran and
for trouble shooting purposes, various auditory and visual
indicators were added. Small green leds were added to
each IR obstacle avoidance modules to indicate an object
was encountered. A bright blue LED was useful to warn
people of its prescience when the robot was allowed to
interact with the pubic. A piezo beeper and speaker were
added to beep at different points of the program. Children
and adults alike found the beeping and flashing lights
very attractive.

9 Behavior

9.1 Getting Around

 The priority of the robot was to move forward, avoid
obstacles, and move toward people. Before making a
move the program sends a burst of 38 kilohertz IR from
the IR LED’s, then immediately checks the state of the IR
receivers. If the way is clear, a forward motion is made.
Forward motion continues until an object is encountered.
If only the right or left IR sensor found something, then
the robot would first backup a bit, followed by a right or
left turn, depending on which sensor was activated.
Backing up helps clear an area for a turn.
 The program keeps track of the number of backups
attempted before returning to forward motion. After a
preset number of backups occur, the robot makes a right
turn, in an attempt to get around an obstacle. Forward
motion is counted as how many times the forward motion
subroutine is accessed and saved as a variable. A reset of
this count occurs on each backup, or turn.

9.2 Scanning

 Once a clear path has been taken, the robot stops to scan
for both the beacon and heat radiated by people. First
rotation is made in quick steps clockwise and scans are
made for the beacon. If the beacon is found, forward
motion starts. After scanning for the beacon the robot then
scans for heat, rotating counterclockwise back to its
starting position. The robot pauses for a few seconds
during each rotation to allow the PIR to react. If heat is
detected forward motion starts. The forward motion
counter variable resets to zero and forward motion
continues until an object is encountered.

9.3 Watchdog

 If no encounters have been made with objects and
many scans have been completed, the robot takes a rest in
“watchdog mode”. During this time, all servos are turned
off to conserve power, however the PIR sensor remains
active. Upon detection of heat, the robot “wakes up”,
makes sounds, flashes the blue LED and starts to move
forward. Holding down the mode switch while switching
on the power, starts watchdog mode immediately, making
the robot a handy security device.

10 Conclusion

 Building a two-wheel robot provided a different and
challenging way to maneuver a robot around.
Maintaining balance was found to depend on weight
distribution and proved to be no problem with this design.
Changes in wheel diameter, weight distribution, and

width of the base need to be addressed. Larger designs
may require gearhead motors for greater torque and
perhaps a method for sensing attitude for controlling
balance. Students at the high school level or at a local
robotics club could build the two-wheel robot design.
Since the robot is made from materials that are commonly
available, it is possible to build and program with very
little investment.

Supplemental Photos

Fig. 6 Wheel Spacers mounted on CD disc

Fig. 7 Bottom View of Rollie

'**
'* Program: rollybeacon1.BAS *
'* Author: Bill Sherman *
'* Notice: Copyright (c) 2001 Bill Sherman *
'* All Rights Reserved *
'* Date: 6-17-02 *
'* Version: 1.0 *
'* Notes: wheel speed con added *
'* 1021 words used *
'**
Include "modedefs.bas"
Define osc 20

TRISA=%11110100 'set porta i/o as needed
TRISB=%00010101 'set portb i/o as needed

beakin var byte 'charactor from beacon
rest var byte 'decide to rest var
y var byte 'scan count
f var byte 'forward movement count
s var byte 'backing up count
n var word 'for/next loop counter
righteye var portb.4 'right sensor
lefteye var portb.2 'left sensor
speed con 20 'speed variable
pyro var portb.0 'pyro heat sensor
irrec var porta.4 'reciever for beacon, make different freq.
push var porta.2 'pushbutton switch
lwheel con 764 'left servo wheel zero speed
rwheel con 776 'right servo wheel zero speed

init: 'initalize key system
 low portb.3 'turn off ir
 low porta.3 'beeper off
 s=0 'backup count zero
 y=0 'scan count zero
 f=0 'set backing up count to 1
 rest = 0 'clear rest var to zero
 gosub zero 'stop servos

flash: 'flash blue led, detect mode select, servos ON
 high porta.1 'turn on motor pwr
 high portb.1 'turn on blue led
 if push = 0 then watchdog 'Hold down ON button for watchdog mode
 pause 2000 'keep blue led on for 2 sec
 low portb.1 'turn off blue led

pulseme: 'generate 38kc light
 high portb.1 'blue led ON
 for n= 1 to 250 'start burst 38 kc
 high portb.3 'led on
 pauseus 2 'led on for 2 more usec
 low portb.3 'led off
 pauseus 13 'off time for led
 next 'repeat to complete waveform burst
 low portb.1 'blue led ON

sense: 'check for objects in front, right, left
 if (lefteye = 0) AND (righteye = 0) then backup
 for n= 1 to 250 'start burst 38 kc
 high portb.3 'led on
 pauseus 2 'led on for 2 more usec
 low portb.3 'led off
 pauseus 13 'off time for led
 next 'repeat to complete waveform burst
 if righteye = 0 then advoidleft 'detect object to the right
 for n= 1 to 250 'start burst 38 kc
 high portb.3 'led on
 pauseus 2 'led on for 2 more usec
 low portb.3 'led off
 pauseus 13 'off time for led
 next 'repeat to complete waveform burst
 if lefteye = 0 then advoidright 'detect object to the left

forward: 'move ahead
 high porta.1 'pwr up servo
 for n=1 to 20 'generate PWM for servos to move forward
 low porta.0 'preset porta.0 to low
 pulsout porta.0,(lwheel+speed) 'left servo PWM high time
 low portb.5 'preset portb.5 to low
 pulsout portb.5,(rwheel-speed) 'right servo PWM high time
 pause 20 'PWM low time
 if righteye = 0 then goto command 'look for IR from Remote
 next 'repeat PWM for a bit of motion
 low portb.6 'red led off
 f=f+1 'increment forward motion counter
 if f>40 then goto scan 'clear forward path has been taken
 goto pulseme 'restart another burst of IR

backup: 'backup
 f=0 'clear forward counts
 gosub zero 'stop all servos
 gosub beep 'beep
 high porta.1 'pwr up servo
 for n=1 to 15 'generate PWM for servos to backup
 low porta.0 'preset porta.0 to low
 pulsout porta.0,(lwheel-(speed-5)) 'left servo PWM high time
 low portb.5 'preset portb.5 to low
 pulsout portb.5,(rwheel+(speed-5)) 'right servo PWM high time
 pause 20 'PWM low time
 next 'repeat PWM for a bit of motion
 s=s+1 'count backups
 if s>8 then goto turnright 'if >8 backups occur, then turn
 goto pulseme

advoidright:

 gosub avoidbackup

turnright: 'turn right
 f=0 'clear forward counts
 s=5 'advance backup counts by 5 when turning
 high porta.1 'pwr up servo
 for n=1 to 20 'generate PWM for servos to turn right
 low porta.0 'preset porta.0 to low
 pulsout porta.0,(lwheel+speed) 'left servo PWM high time
 low portb.5 'preset portb.5 to low
 pulsout portb.5,(rwheel+speed) 'right servo PWM high time
 pause 20 'PWM low time
 next 'repeat PWM for a bit of motion
 goto pulseme 'restart another burst of IR

advoidleft:

 gosub avoidbackup 'backup a little before turning

turnleft: 'turn left
 f=0 'clear forward counts
 s=2 'advance backup counts by 2 when turning
 high porta.1 'pwr up servo
 for n=1 to 20 'generate PWM for servos to turn left
 low porta.0 'preset porta.0 to low
 pulsout porta.0,(lwheel-speed) 'left servo PWM high time
 low portb.5 'preset portb.5 to low

 pulsout portb.5,(rwheel-speed) 'right servo PWM high time
 pause 20 'PWM low time
 next 'repeat PWM for a bit of motion
 goto pulseme 'restart another burst of IR

zero: 'stop the servos
 for n=1 to 5 'generate PWM for servos to stop
 low porta.0 'preset porta.0 to low
 pulsout porta.0,lwheel 'left servo PWM high time
 low portb.5 'preset portb.5 to low
 pulsout portb.5,rwheel 'right servo PWM high time
 pause 20 'PWM low time
 next 'repeat PWM to stop motion
 low porta.1 'pwr down servo
 return

beep:

 sound portb.7, [75,10,110,10] 'make a sound
 return

scan: 'seeks ir beacon
 y=0 'clear scan turn count
 s=0 'clear backup counts

scan2:
 gosub zero
 f=0 'forward step counts
 y=y+1 'scan count
 high portb.1 'turn on blue led
 high porta.3 'beeper on
 serin porta.4,t1200,100,break,["a"],beakin 'receive beacon signal
 if (beakin >64) or (beakin <91) then beacon 'if valid character then goto beacon

break: 'continue rotation if no beacon found
 low portb.1 'blue led off
 low porta.3 'beeper off
 high porta.1 'pwr up servo
 for n=1 to 8 'scan right
 pulsout porta.0,(lwheel+speed) 'left servo PWM high time
 low portb.5 'preset portb.5 to low
 pulsout portb.5,(rwheel+speed) 'right servo PWM high time
 pause 20 'PWM low time
 next 'repeat PWM to rotate
 if y > 25 then hotbody 'after turning enough degrees, clear y
 goto scan2 'keep turning cw

beacon:
 low porta.3 'turn off beeper
 sound portb.7, [80,100,120,300] 'make different sound
 goto forward 'go toward beacon

hotbody: 'seeks heat
 y=0 'clear number of scan turns

hotbody2: 'continue with seeking heat
 gosub zero 'stop motion
 y=y+1 'scan count
 pause 3000 'wait for pyro to settle
 high portb.1 'turn on blue led
 pause 100 'keep blue led on
 low portb.1 'turn off blue led
 for n=1 to 500 'loop 500 seeks for heat
 if pyro = 1 then high portb.6 'turn on red led
 if pyro = 1 then rest = 0 'reset rest var to zero
 if pyro = 1 then goto pulseme 'goto pulseme (body of program)
 if irrec = 0 then goto beacon 'still can seek ir from operator
 low portb.1 'turn off blue led
 pause 10 'if no heat, then loop every 10 ms
 next 'continue loop
 high porta.1 'pwr up servo
 for n=1 to 30 'start scan left
 pulsout porta.0,(lwheel-speed) 'left servo PWM high time
 low portb.5 'preset portb.5 to low
 pulsout portb.5,(rwheel-speed) 'right servo PWM high time
 pause 20 'PWM low time
 next 'repeat PWM to rotate
 rest = rest + 1 'increment rest value
 if rest > 18 then watchdog 'goto watchdog and wait
 if y > 7 then goto pulseme 'after turning around goto pulseme
 goto hotbody2 'if less than 8 turns then turn cw

command: 'operator can make it turn to the right
 gosub beep 'make a beep to alert operator signal recieved
 pause 500
 goto turnright 'make a right turn

watchdog:
 low porta.1 'turn off motor pwr
 low portb.1 'turn blue led off
 high porta.3 'start up a beep
 pause 2000 'continue beep
 low porta.3 'stop beep
 s=s+1 'count watchdog disturbance
 if s > 4 then flash 'rollie comes out if disturbed 5 times

watchdog2:

 if pyro = 1 then watchdog 'look for heat
 if push = 0 then watchdog3 'look for silent watchdog mode
 if righteye = 0 then flash 'look for IR-remote signal
 goto watchdog2

watchdog3: 'silent watchdog

 if righteye = 0 then flash 'look for IR-remote signal
 if pyro = 0 then watchdog3 'look for heat
 high portb.1 'blue led turns on
 pause 1000 'if it sees heat
 low portb.1 'turn off blue led
 goto watchdog3 'loop

avoidbackup:

 for n=1 to 15 'generate PWM for servos to backup
 low porta.0 'preset porta.0 to low
 pulsout porta.0,(lwheel-(speed-5)) 'left servo PWM high time
 low portb.5 'preset portb.5 to low
 pulsout portb.5,(rwheel+(speed-5)) 'right servo PWM high time
 pause 20 'PWM low time
 next 'repeat PWM to backup a bit
 return

end

